Data Transform¶
The transformation module is responsible for making the data transformations.
SQL transformation¶
This module makes SQL expressions available to transform. Example:
from pyiris.ingestion.transform import SqlTransformation
sql_transformation = SqlTransformation(name='divide', description='Unit price division', to_column="unit_price", sql_expression="price/quantity")
transformed_dataframe = sql_transformation.transform(dataframe=extracted_dataset)
Hash transformation¶
This module returns a hash transformation based on an inputted column. Example:
from pyiris.ingestion.transform import HashTransformation
hash_transformation = HashTransformation(name='Hash CPF', description='Hash CPF to be according to LGPD', from_columns=["cpf"])
transformed_dataframe = hash_transformation.transform(dataframe=extracted_dataset)
Custom transformation¶
This module gives for the user tools to customize the dataframe, with the main custom features. Example of uses:
from pyiris.ingestion.transform.transformations.custom.custom import divide
from pyiris.ingestion.transform.transformations.custom_transformation import CustomTransformation
custom_transformation = CustomTransformation(name='middle_price', description='Dividing two fictitious columns (price/quantity) to generate column middle_price', method=divide, to_column='middle_price', column1='price', column2='quantity')
transformed_dataframe = custom_transformation.transform(dataframe=extracted_dataset)
Custom transformation - snakecase_column_names¶
This method intends to rename all columns of a given dataframe to snake case.
The transformations applied are:
replacing letters containing accents and special characters (e.g. replacing ‘á’, ‘à’, ‘ã’ or ‘â’ to ‘a’);
replacing uppercase letters with underscore and lowercase;
removing duplicated undescore;
removing leading and trailing undescore;
removing all characters that are not allowed (a-z0-9_)
Example code¶
from pyiris.ingestion.transform.transformations.custom.custom import snakecase_column_names
from pyiris.ingestion.transform.transformations.custom_transformation import CustomTransformation
custom_transformation = CustomTransformation(name="snakecase_column_names", description="rename columns to snake case", method=snakecase_column_names)
transformed_dataframe = custom_transformation.transform(dataframe=extracted_dataset)
Example outputs¶
already_snake_case_column_name → already_snake_case_column_name notSNAKECaseColumnNameOne → not_snake_case_column_name_one NÕTSnákêCãsèColùmnNãmêTWÕ → not_snake_case_column_name_two
Transform Service¶
The class pyiris.ingestion.transform.TransformService works as a service. You can execute some transformations in sequence, or only one. Follow the example of uses:
from pyiris.ingestion.transform import TransformService, HashTransformation, SqlTransformation
transform_service = TransformService(
transformations=[
SqlTransformation(name='divide', description='Getting middle price', to_column="middle_price", sql_expression="price/quantity"),
HashTransformation(name='Hash CPF', description='Hash CPF to be according to LGPD', from_columns=["seller_cpf"])
]
)
transformed_dataframe = transform_service.handler(dataframe=extracted_dataset)
To have more information, please, access the code docstring in Pyiris modules.